
API

The oboe function

Oboe.js exposes only one function, oboe, which is used to instantiate a new
Oboe instance. Calling this function starts a new HTTP request unless the caller
is managing the stream themselves.

oboe(String url)

oboe({
method: String,
url: String,
headers: Object,
body: String|Object,
cached: Boolean

})

// the doMethod style of calling is deprecated
// and will be removed in v2.0.0:
oboe.doGet(url)
oboe.doDelete(url)
oboe.doPost(url, body)
oboe.doPut(url, body)
oboe.doPatch(url, body)

oboe.doGet({url:String, headers:Object, cached:Boolean})
oboe.doDelete({url:String, headers:Object, cached:Boolean})
oboe.doPost({url:String, headers:Object, cached:Boolean, body:String|Object})
oboe.doPut({url:String, headers:Object, cached:Boolean, body:String|Object})
oboe.doPatch({url:String, headers:Object, cached:Boolean, body:String|Object})

The method, headers, body, and cached arguments are optional.

• If method is not given Oboe defaults to GET.
• If body is given as an object it will be stringified using JSON.stringify

prior to sending. The Content-Type request header will automatically be
set to text/json unless a different value is explicitly given.

• If the cached option is given as false cachebusting will be applied by
appending _={timestamp} to the URL’s query string. Any other value
will be ignored.

1

BYO stream

Under Node.js you may also pass oboe an arbitrary ReadableStream for it to
read JSON from. It is your responsibility to initiate the stream and Oboe will
not start a new HTTP request on your behalf.

oboe(stream)

node event

The methods .node() and .on() are used to register interest in particular nodes
by providing JSONPath patterns. As the JSON stream is parsed the Oboe
instance checks for matches against these patterns and when a matching node is
found it emits a node event.

.on(’node’, pattern, callback)

// 2-argument style .on() ala Node.js EventEmitter#on
.on(’node:{pattern}’, callback)

.node(pattern, callback)

// register several listeners at once
.node({

pattern1 : callback1,
pattern2 : callback2

});

When the callback is notified, the context, this, is the Oboe instance, unless it
is bound otherwise. The callback receives three parameters:

node The node that was found in the JSON stream. This can be any valid JSON type - Array, Object, String, Boolean or null

path An array of strings describing the path from the root of the JSON to the matching item. For example, if the match is at (root).foo.bar this array will equal [’foo’, ’bar’]. Example usage.

ancestors An array of the found item’s ancestors such that ancestors[0] is the JSON root, ancestors[ancestors.length-1] is the parent object, and ancestors[ancestors.length-2] is the grandparent. These ancestors will be as complete as possible given the data which has so far been read from the stream but because Oboe.js is a streaming parser they may not yet have all properties

oboe(’friends.json’)
.node(’name’, function(name){

console.log(’You have a friend called’, name);
});

2

http://nodejs.org/api/stream.html#stream_class_stream_readable

path event

Path events are identical to node events except that they are emitted as soon
as matching paths are found, without waiting for the thing at the path to be
revealed.

.on(’path’, pattern, callback)

// 2-argument style .on() ala Node.js EventEmitter#on
.on(’path:{pattern}’, callback)

.path(pattern, callback)

// register several listeners at once
.path({

pattern1 : callback1,
pattern2 : callback2

});

oboe(’friends.json’)
.path(’friend’, function(name){

friendCount++;
});

One use of path events is to start adding elements to an interface before they
are complete.

done event

.done(callback)

.on(’done’, callback)

Done events are fired when the response is complete. The callback is passed the
entire parsed JSON.

In most cases it is faster to read the JSON in small parts by listening to node
events (see above) than waiting for it to be completely download.

oboe(’resource.json’)
.on(’done’, function(parsedJson){

console.log(’Request complete’, parsedJson);
});

3

start event

.start(callback)

.on(’start’, callback)

Start events are fired when Oboe has parsed the status code and the response
headers but has not yet received any content from the response body.

The callback receives two parameters:

name type

status Number HTTP status code

headers Object Object of response headers

oboe(’resource.json’)
.on(’start’, function(status, headers){

console.log(’Resource cached for’, headers.Age, ’secs’);
});

Under Node.js this event is never fired for BYO streaming.

fail event

.fail(callback)

.on(’fail’, callback)

Fetching a resource could fail for several reasons:

• Non-2xx status code
• Connection lost
• Invalid JSON from the server
• Error thrown by an event listener

The fail callback receives an object with four fields:

Field Meaning

4

thrown The error, if one was thrown

statusCode The status code, if the request got that far

body The response body for the error, if any

jsonBody If the server’s error response was JSON, the parsed body

oboe(’/content’)
.fail(function(errorReport){

if(404 == errorReport.statusCode){
console.error(’no such content’);

}
});

.header([name])

.header()

.header(name)

.header() returns one or more HTTP response headers. If the name parameter
is given that named header will be returned as a String, otherwise all headers
are returned as an Object.

undefined wil be returned if the headers have not yet been received. The
headers are available anytime after the start event has been emitted. They will
always be available from inside a node, path, start or done callback.

.header() always returns undefined for non-HTTP streams.

oboe(’data.json’)
.node(’id’, function(id){

console.log(’Server has id’, id,
’as of’, this.headers(’Date’));

});

.root()

At any time, call .root() on the oboe instance to get the JSON parsed so far.
If nothing has yet been received this will return undefined.

var interval;

5

oboe(’resourceUrl’)
.start(function(){

interval = window.setInterval(function(){
console.log(’downloaded so far:’, this.root());

}.bind(this), 10);
})
.done(function(completeJson){

console.log(’download finished:’, completeJson);
window.clearInterval(interval);

});

.forget()

.node(’*’, function(){
this.forget();

})

.forget() is a shortcut for .removeListener() in the case where the listener to
be removed is currently executing. Calling .forget() on the Oboe instance
from inside a node or path callback de-registers that callback.

// Display only the first ten downloaded items
// but place all in the model

oboe(’/content’)
.node(’!.*’, function(item, path){

if(path[0] == 9)
this.forget();

displayItem(item);
})
.node(’!.*’, function(item){

addToModel(item);
});

.removeListener()

.removeListener(’node’, pattern, callback)

.removeListener(’node:{pattern}’, pattern, callback)

.removeListener(’path’, pattern, callback)

.removeListener(’path:{pattern}’, pattern, callback)

.removeListener(’start’, callback)

6

.removeListener(’done’, callback)

.removeListener(’fail’, callback)

Remove any listener on the Oboe instance.

From inside node and path callbacks .forget() is usually more convenient because
it does not require that the programmer stores a reference to the callback function.
However, .removeListener() has the advantage that it may be called from
anywhere.

.abort()

Calling .abort() stops an ongoing HTTP call at any time. You are guaranteed
not to get any further path or node callbacks, even if the underlying transport
has unparsed buffered content. After calling .abort() the done event will not
fire.

Under Node.js, if the Oboe instance is reading from a stream that it did not
create this method deregisters all listeners but it is the caller’s responsibility to
actually terminate the streaming.

// Display the first nine nodes, then hang up
oboe(’/content’)

.node(’!.*’, function(item){
display(item);

})
.node(’![9]’, function(){

this.abort();
});

Pattern matching

Oboe’s pattern matching is a variation on JSONPath. It supports these clauses:

Clause Meaning

! Root object

. Path separator

person An element under the key ‘person’

{name email} An element with attributes name and email

* Any element at any name

[2] The second element (of an array)

7

https://code.google.com/p/json-path/

[’foo’] Equivalent to .foo

[*] Equivalent to .*

$ Explicitly specify an intermediate clause in the jsonpath spec the callback should be applied to

The pattern engine supports CSS-4 style node selection using the dollar, $,
symbol. See also the example patterns.

Browser support

These browsers have full support:

• Recent Chrome
• Recent Firefox
• Internet Explorer 10
• Recent Safaris

These browsers will run Oboe but not stream:

• Internet explorer 8 and 9, given appropriate shims for ECMAScript 5

Unfortunately, IE before version 10 doesn’t provide any convenient way to read
an http request while it is in progress.

The good news is that in older versions of IE Oboe gracefully degrades, it’ll just
fall back to waiting for the whole response to return, then fire all the events
together. You don’t get streaming but it isn’t any worse than if you’d have
designed your code to non-streaming AJAX.

8

https://github.com/kriskowal/es5-shim/blob/master/es5-sham.js
http://blogs.msdn.com/b/ieinternals/archive/2010/04/06/comet-streaming-in-internet-explorer-with-xmlhttprequest-and-xdomainrequest.aspx
http://blogs.msdn.com/b/ieinternals/archive/2010/04/06/comet-streaming-in-internet-explorer-with-xmlhttprequest-and-xdomainrequest.aspx

	API
	The oboe function
	BYO stream
	node event
	path event
	done event
	start event
	fail event
	.header([name])
	.root()
	.forget()
	.removeListener()
	.abort()
	Pattern matching
	Browser support

